1、变频器工作原理及控制过程

   变频器工作原理 直流->振荡电路->变压器(隔离、变压)->交流输出 方波信发生器使直流以输出 怎样将直流电转换成交流电? 有三种方法: 1、用直流电源带动直流电动机机械传动到交流发电机发出交流电;这是一种最古老的方法,但现在仍有人在用,特点是成本低,易维护。目前在大功率转换中还在使用。 2、用振荡器(就是目前市场上的逆变器);这是比较先进的方法,成本高,多用于小功率变换; 3、机械振子变换器,其原理就是让直流电流断断续续,通过变压器后就能在变压器的次级输出交流电,这是一种比较老的方法,目前基本上已被淘汰。 现在日本发现一种有机物可以转换 2交流电是指电压或电流的幅值在0值附近震荡,也就是有正有负,方向会发生变化,而并不一定是正弦的。 直流电也并不是恒定不变的,它的幅值也是可以变化的,但不会改变方向。也就是说恒为正或恒为负。 在逆变器中不能单独应用可控硅,它仅仅是起一个开关作用,必须要由振荡电路来控制可控硅的开/关状态,得到方波形的交流电,再经变压、滤波,得到较纯的正弦波交流电。 UPS电源(Uninterruptible Power System 不间断电源系统)利用逆变电路,即用直流电驱动一个振荡器,产生交流振荡,一般得到的是方波。如果经过滤波电路去除Hz交流电。 变频器1 变极调速、定子调压调速、转差离合器调速 把直流电逆变成不同频率的交流电,或是把交流电变成直流电再逆变成不同频率的交流电,或是把直流电变成交流电再把交流电变成直流电等技术的总称。特点:电能不变,只有频率变。 应交流电机无级调速的需要而诞生的。 自年代以来,电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场革命,即交流调速取代直流调速、计算机数字控制技术取代模拟控制技术已经成为发展趋势。电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、失去技术进步的一种主要手段。变频调速以其优异的调速起动、制动性能,高效率、高功率因数和节电效果,得到广泛应用。 变频调速技术是强弱电混合、机电一体的综合性技术,既要处理巨大电能的转换(整流、逆变),又要处理信息的收集、交换和传输,因此它的共性技术必定分成功率和控制两大部分。前者要解决与高电压大电流有关的技术问题,后者要解决控制模块的硬、软件开发问题 (1)实现高水平的控制 (2)开发清洁电能的变流器 (3)缩小装置的尺寸 (4)高速度的数字控制 (5)模拟器与计算机辅助设计(CAD)技术 (1)交直变频技术(即整流技术) 通过整流件实现功率转换 。 (2)直直变频技术(即斩波技术) 通过改变电力电子器件的通断时间即改变脉冲频率或宽度,从而达到调节直流平均电压的目的 (3)直交变频技术(即逆变技术) 利用功率开关将直流电变成不同频率的交流电。 (4)交交变频技术(即移相技术) 通过控制电力电子器件的导通与关断时间,实现交流无触点的开关、调压、调光、调速等的目的 (HZ电源 对频率、电压波形和幅值及电网干扰等有较高要的。 (HZ的交流电,对设备临时供电。 (3)中频装置 广泛应用于金属熔炼、感应加热及机械零件的淬火。 (4)变频调速 产生频率、电压可调的电源。 (5)节能降耗 1)晶闸管(SCR) 没有自关断能力,逆变时需要另设换流电路,造成电路结构复杂,增加变频器成本。但由于件容量大,在KA以上的大容量变频器中得到广泛的应用。 2)门极可关断晶闸管(GTO) 可通过门极信控制导通和关断。它是利用门极反向电流而获得自关断能力,属于全控器件,无需换流电路。已经逐步取代SCR。 3)电力晶体管(GTR) 是一种高反压晶体管,具有自关断能力,并有开关时间短、饱和压降低和安全工作区宽等优点。它被广泛用于交直流电机调速、中频电源等电力变流装置中。主要用作开关,工作于高电压大电流的场合,一般为模块化。 4)功率场效应管(MOSFET) 根据门极电压的电场效应进行导通与关断的单极晶体管。具有自关断能力强、驱动功率小、工作速度高、无二次击穿现象、安全工作区宽等。用于小容量变频器中。 3)电力晶体管(GTR) 主要特点: 输出电压 可以采用脉宽调制方式 载波频率 较低(开关时间较长) 电流波形 高次谐波成分较大,噪声大。 输出转矩 与工频运行时相比,略有下降 5)绝缘栅双极晶体管(IGBT) 集GTR和PMOSFET的优点于一身,具有输入阻抗高、开关速度快、驱动电路简单、通态电压低、能承受高电压大电流等优点。目前中小容量变频器新产品中都采用它。适于高压的为HIGBT。 6)智能功率模块(IPM) 是一种将功率开关器件及其驱动电路、保护电路等集成在同一封装内的集成模块。目前采用较多的是IGBT作为大功率开关器件的模块,器件模块内集成了电流传感器,可以检测过电流及短路电流。具有过电流保护、过载保护以及驱动电流电压不足时的保护功能。 7)集成门极换流晶闸管(IGCT) 是一种中压、大功率半导体开关器件。它是将门极驱动电路与门极换流晶闸管GCT集成于一体,集GTO和IGBT的优点于一身。 变频器的基本结构 主要由主电路(包括整流器、中间直流环节、逆变器)和控制电路组成。 整流器 将三相交流电转换成直流电。 中间直流环节 中间直流储能环节,在它和电动机之间进行无功功率的交换。 控制电路 常由运算电路、检测电路、控制信输入/输出电路和驱动电路组成。主要任务是完成对逆变器的开关控制、对整流器的电压控制以及完成各种保护功能等,其控制方法可以采用模拟控制或数字控制。目前许多变频器已经采用机来进行全数字控制,采用尽可能简单的硬件电路,靠软件来完成各种功能。 、采样及驱动电路 变频器的主控电路 (1)基本任务 1)接受各种信 2)进行基本运算 3)输出计算结果 (2)其他任务 1)实现各项控制功能 2)实现各项保护功能 变频器的控制电源、采样及驱动电路 (1)控制电源 提供稳压电源 2)外控电路 (2)采样电路 1)提供控制用数据 2)提供保护采样 (3) 驱动电路 . 将交流电转换为直流电,应用最多的是三相桥式整流电路。分为不可控整流和可控整流电路。 将直流电转换为交流电,应用最多的也是三相桥式逆变电路。 变频器的分类 的调制方式分 (1)PAM(脉幅调制) 在整流电路部分对输出电压幅值进行控制,而在逆变电路部分对输出频率进行控制的控制方式。 (2)PWM(脉宽调制) 保持整流得到的直流电压大小不变的条件下,在改变输出频率的同时,通过改变输出脉冲的宽度,来达到改变等效输出电压的一种方式。 (2)按工作原理分 /F控制 对变频器的频率和电压同时进行调节 转差频率控制 为/F控制的改进方式 矢量控制 将交流电机的定子电流分解成磁场分量电流和转矩分量电流并分别加以控制的方式 直接转矩控制 把转矩作为控制量,直接控制转矩,是继矢量控制变频调速技术之后的一种新型的交流变频调速技术。 (3)按用途分 通用变频器 能与普通的笼式电动机配套使用,能适应各种不同性质的负载并具有多种可供选择功能 高性能专用变频器 对控制要较高的系统(电梯、风机水泵等),大多采用矢量控制方式 高频变频器 高速电动机配套使用 (4)按变换环节分 交交变频器 把频率固定的交流电直接变换成频率和电压连续可调的交流电。无中间环节,效率高,但连续可调的频率范围窄。 交直交变频器 先把交流电变成直流电,再把交流电通过电力电子器件逆变成直流电。优势明显,目前广泛采用的方式 (5)按直流环节的储能方式分 电流型 中间环节采用大电感作为储能环节,无功功率将由该电感来缓冲。再生电能直接回馈到电网。 电压型 中间环节采用大电容作为储能环节,负载的无功功率将由它来缓冲。无功能量很难回馈到交流电网。 1、输入侧的额定值 主要是电压和相数 小容量有 HZ,三相,用于国内设备; HZ,三相,主要用于进口设备; (HZ,主要用于家用电器。 2、输出侧的额定值 (1)输出电压最大值UN (2)输出电流最大值IN 长时间通过 (3)输出容量SN= UNIN (4)配用电动机容量PN=SNηMcosφ (S,%IN、 3、频率指标 (HZ (2)频率精度 指变频器输出频率的准确程度。 (3)频率分辨率 指输出频率的最小改变量。 变频器的主电路 变频器的主电路主要由整流电路、中间直流电路和逆变器三部分组成 交直部分 (组成三相不可控整桥。 (2)滤波电容CF 除滤波外,还有在整流电路与逆变电路之间去耦作用,以消除相互干扰。 (3)限流电阻RL与开关SL 限制CF的充电电流,正常时通过开关短接电阻。 直交部分 (组成逆变桥,是变频器实现变频的环节,是核心部分。 (2)续流二极管D7~D 作用: 电动机为感性负载,无功分量返回直流电源提供“通道”。(频率下降时,再生制动状态) (3)缓冲电路 由C~R构成。 R~C使得逆变管在判断过程中R不起作用。 制动电阻和制动单 制动电阻RB 把再生到直流电路的能量消耗掉 制动单TB 控制流经RB的放电电流IB 三相交流异步电动机的转速为 可见,在转差率S变化不大的情况下,可以认为,调节电动机定子电源频率时,电动机的转速大致随之成正比变化。若均匀改变电动机电源的频率f,则可以平滑地改变电动机的转速。 将直流电变换为交流电的过程称为逆变,完成逆变功能的装置叫逆变器,它是变频器的重要组成部分 补充:逆变器件的工作条件 电压 U线=。考虑到电感及负载动能反馈能量的效应,开关器件的耐压应在以上。 电流 当PN=KW时,IN=A。 逆变过程实际上是若干个开关器件长时间地反复交替导通和关断的过程,这是有触点开关器件无法做到的,必须依赖无触点开关(即半导体开关器件),而无触点开关要做到承受足够大的电压和电流并非易事。因此,变频器的出现比异步电动机晚了长达百年之久。 最基本的控制如频率的上升和下降、改变频率的同时还要改变电压等。 半导体开关器件详见课件第一讲或教材P 对异步电动机进行调速控制时对主磁通的要 希望主磁通保持额定值不变 太弱 铁心利用不充分,同样定子电流下电磁转矩小,电动机负载能力下降。 太强 则处于过励磁状态,为防电机过热,负载能力也下降。 E1= 要降低供电频率的同时降低感应电动势,保持E难于直接测量和直接控制,当E1和f1较高时,可忽略漏抗,。 当频率较低时,/F控制需要人为提高定子电压以补偿定子电压降的影响。 频率由额定值向上增大,但电压U=U1N不变。使主磁通随着f1的上升而减小,相当于直流电动机弱磁调速的情况属于近似的恒功率调速方式。 必须按照一定的规律同时改变其定子电压和频率,即必须通过变频装置获得电压和频率均可调节的供电电源,实现F调速控制。( 即/F控制) F( ariable oltage ariable Freqency) 脉宽调制技术 对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲,其脉冲宽度随正弦规律变化。 为使输出电压和输出频率都得到控制,变频器通常由一个可控整流电路和一个逆变电路组成,控制整流电路以改变输出电压,控制逆变电路来改变输出频率。 )整流电路采用二极管,cosφ≈)控制输出脉宽来改变输出电压,加快变频过程的动态响应。 采样控制理论的结论 冲量(窄脉冲的面积)相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。 如图PWM波形和正弦半波是等效的。这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称为SPWM波形(正弦脉宽)。 调制方法 把所希望的波形作为调制信,把接受调制的信作为载波,通过对载波的调制得到所期望的PWM波形。 载波UC 采用等腰三角波,因为它的上下宽度与高度呈线性关系且左右对称,当它与任何一个平缓变化的调制信波相交时,如果在交点时刻控制电路中开关器件的通断,就可以得到宽度正比于信波幅值的脉冲,这正好符合PWM控制要 调制波Ur 为正弦波 经正弦调制后的脉冲系列中,各脉冲的上升沿与下降沿是由正弦波和三角波的交点来决定的。 负半周T (1)单极性PWM控制方式 PWM波形只在一个方向变化的控制方式。输出有三种电平(0,± Ud) (2)双极性PWM控制方式 三角波在每个半周其内,都是在正负两个方向变化。PWM波形也是在两个方向变化。输出只有两种电平。(± Ud) Ur>UC时开关通 Ur<UC时开关断 (3)三相逆变电路 (1)载波比 载波频率fc与调制信频率fr之比。N=fc/fr (2)异步调制 载波信与调制信不保持同步关系的调制方式。当调制信频率变化时,通常保持载波频率固定不变,因此N是变化的。特点:输出脉冲的个数不固定,脉冲相位也不固定,正负半周期的脉冲不对称。 在异步调制方式中,希望尽量提高载波频率,以使在调制信频率较高时仍能保持较大的载波比,改善输出特性。 (3)同步调制 N=C 在变频时使载波信和调制信保持同步的调制方式。在三相PWM逆变电路中,通常公用一个三角载波信,取N为3的整数倍且为奇数。 这里说的很详细:#2 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类[1]:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器 同整流器相反,逆变器是将直流功率变换为所要频率的交流功率,以所确定的时间使)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信进行比较运算,决定逆变器的输出电压、频率。 ()速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信为速度信,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均hz)或v/hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(dc)。把直流电(dc)变换为交流电(ac)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,:,hz [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为,hz改变到hz改变到v改变到约v。 如果要正确的使用变频器, 必须认真地考虑散热的问题。变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高度,变频器使用寿命减半。因此,我们要重视散热问题啊!在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。 通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少. 可以用以下公式估算: 发热量的近似值= 变频器容量(kw)× [w]因为各变频器的硬件都差不多, 所以上式可以针对各品牌的产品. 注意: 如果有制动电阻的话,因为制动电阻的散热量很大, 因此最好安装位置最好和变频器隔离开, 如装在柜子上面或旁边等。那么, 怎样采能降低控制柜内的发热量呢? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的! 关于冷却风扇一般功率稍大一点的变频器, 都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。 注意控制柜和变频器上的风扇都是要的,不能谁替代谁。 二、其他关于散热的问题 ,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,m每5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大, 所以也要看具体应用。 比方说在m的地方,但是周期性负载,如电梯,就不必要降容。 :变频器的发热主要来自于igbt,igbt的发热有集中在开和关的瞬间。 因此开关频率高时自然变频器的发热量就变大了。有的宣称降低开关频率可以扩容,就是这个道理。 ? 转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。矢量控制把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。矢量控制可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。 三、变频器制动的情况 制动的概念:指电能从电机侧流到变频器侧(或供电电源侧),. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到变频器侧。这些功率可以用电阻发热消耗。在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,再生制动,而该方法可应用于变频器制动。在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做功率返回再生方法。在实际中,这种应用需要能量回馈单选件。 四、怎样提高制动能力? 为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。为了改善制动能力,不能期望靠增加变频器的容量来解决问题。请选用制动电阻、制动单或功率再生变换器等选件来改善变频器的制动容量。 当电机的旋转速度改变时,其输出转矩会怎样? 我们经常听到下面的说法:电机在工频电源供电时(*hz频率时,电机的输出转矩将降低。通常的电机是按hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。当电机以大于/2。因此在额定频率之上的调速称为恒功率调速.(p=ue*ie)

2、电机变频器工作原理是什么

   利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。现使用的变频器主要采用交—直—交方式(F变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。再补充一下,在变频技术以前,电机用的是直流电调速,就是改变直流电电 压,因为直流电机有电刷,维护复杂,还有电火花(危险场合不能用),基本淘汰。相对来说直流调速,速度更稳定,所以还有使用。 三相交流异步电动机工作原理: 三相交流异步电动机工作原理:三相对称绕组,通入三相对称交流电,将在空间产生旋转磁场,此磁场切割转子导体,将在转子中产生感应电动势及感应电流,并且转速低于同步速并与同步速方向相同旋转。 变频器(ariablefrequency Drive,FD)是应用变频技术与电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单、驱动单、检测单处理单等组成。通过改变电源的频率来达到改变电源电压的目的,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 工作原理 概述 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器 同整流器相反,逆变器是将直流功率变换为所要频率的交流功率,以所确定的时间使)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信进行比较运算,决定逆变器的输出电压、频率。 ()速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信为速度信,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。 首先要说一下什么是变频器? 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 第二个就是要讲一下pwm和pam pwm是英文pulse width modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 pam是英文pulse amplitude modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 第三个就是工作原理了 如图所示: 整流桥:变频器整流桥即为三相桥式整流电路,由六个整流二极管组成。即把三相交流:主要作用为去除igbt的过流、过压能量及电机的能量反馈,去除尖峰 igbt:构成逆变电路的主要器件,也是变频器的核心件。通过控制igbt的通、断来把直流电逆变频率、幅值都可调的交流电。

3、三相异步电机变频调速的工作原理

   异步电动机的转数=f/。改变电源的频率就改变了异步电动机的转数 ,随着电力电子技术的发展,交流变频技术从理论到实际逐渐走向成熟。变频器不仅调速平滑,范围大,效率高,启动电流小,运行平稳,而且节能效果明显。因此,交流变频调速已逐渐取代了过去的传统滑差调速、变极调速、直流调速等调速系统,越来越广泛的应用于冶金、纺织、印染、烟机生产线及楼宇、供水空调等领域。 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(F变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; ;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 ;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; 。变频器内部是大功率的电子件,极易受到工作温度的影响,产品一般要为℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要,绝对不允许把发热件或易发热的件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 。使用环境如果腐蚀性气体浓度大,不仅会腐蚀器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 I. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的器件。设备运行一段时间后,应对其进行检查和维护。 . 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的器件均应可靠接地,除此之外,各电气件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; 。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 ,其最小距离为度角交叉。与变频器有关的模拟量信线与主回路线分开走线,即使在控制柜中也要如此。 I. 与变频器有关的模拟信线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; :电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计: 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 %。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: ,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统%以上,需要考虑控制电源的抗干扰措施。 、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: :如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 :在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 变频器接线规范: 信线与动力线必须分开走线:使用模拟量信进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信线与强电回路(主回路及顺控回路)分开走线。距离应在m。 信线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信线与动力线的彻底分开。 mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信线上使用压线棒端子。 变频器的运行和相关参数的设置: 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 常见故障分析: 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。 将交流电整流滤波后利用半导体开关器件按要逆变成我们需要的交流,这时,变频器的交流输出频率是可以调整的。我们知道,电动机旋转磁场的转速n=f/磁极对数,当f也就是频率改变时,电机的转速也就相应地改变,这就是变频器的原理。

4、变频电机的控制原理是什么?

   变频电机变频技术实际是利用电机控制学原理,通过所谓的变频器,对电机进行控制。用于此类控制的电机叫做变频电机。 常见的变频电机包括:三相异步电机、直流无刷电机、交流无刷电机及开关磁阻电机等。 变频电机的控制原理 通常变频电机的控制策略为:基速下恒转矩控制、基速以上恒功率控制、超高速范围弱磁控制。 基速:由于电机运转时会产生*势,而*势的大小通常与转速成正比。因此当电机运转到一定速度时,由于*势大小与外加电压大小相同,此时的速度称为基速。 恒转矩控制:电机在基速下,进行恒转矩控制。此时电机的*势E与电机的转速成正比。又电机的输出功率与电机的转矩及转速乘积成正比,因此此时电机功率与转速成正比。 恒功率控制:当电机超过基速后,通过调节电机励磁电流来使电机的*势基本保持恒定,以此提高电机的转速。此时,电机的输出功率基本保持恒定,但电机转矩与转速成反比例下降。 弱磁控制:当电机转速超过一定数值后,励磁电流已经相当小,基本不能再调节,此时进入弱磁控制阶段。 电动机的调速与控制,是工农业各类机械及办公、民生电器设备的基础技术之一。随着电力电子技术、电子技术的惊人发展,采用“专用变频感应电动机变频器”的交流调速方式,正在以其卓越的性能和经济性,在调速领域,引导了一场取代传统调速方式的更新换代的变革。它给各行各业带来的福音在于:使机械自动化程度和生产效率大为提高、节约能源、提高产品合格率及产品质量、电源系统容量相应提高、设备小型化、增加舒适性,目前正以很快的速度取代传统的机械调速和直流调速方案。 由于变频电源的特殊性,以及系统对高速或低速运转、转速动态响应等需,对作为动力主体的电动机,提出了苛刻的要,给电动机带来了在电磁、结构、绝缘各方面新的课题。 变频器的工作原理: 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(vvvf变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为igbt三相桥式逆变器,且输出为pwm波形,中间直流环节为滤波、直流储能和缓冲无功功率。 频电机的工作原理与三相交流异步电动机工作原理一样,变频电机是通过改变 ? 输入三相交流电的频率改变电机的转速,一句话,变频是用来调速的。 ? 普通的三相交流异步电动机也可以作变频电机使用,没有本质区别,只是变 ? 频电机在频率的影响上作了优化,变频电机的工作频率一般5hz~hz. 变频就是改变频率,变频的设备叫变频器,西门子叫矢量控制器。 ? 最初的变频器只简单改变变频,现在的变频器可对电压,电流,频率重新调制 ? 就是矢量控制。

5、变频电机工作原理与应用

   高压电机要实现调速,主要采用三种方式:()高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。 上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调速效果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要比较严格,功率较大时(年以前推广高压变频器,一般还要给用户讲解其原理,为什么要使用它。但是现在,经过众多的共同努力,和市场使用效果的宣传,用户已经普遍接受高压变频器,只是在众多中选择谁的问题。 () 现场的适应性非常重要。一般的高压变频器开发,在自己的实验室里,都很难完全模仿用户现场的情况,所以,产品设计的灵活性怎么样,到了现场遇到问题能否尽快解决,都是非常重要的。由于耗电量大,负载又非常重要,用户往往不希望设备较长时间的试运行,所以,产品设计不严谨,一旦遇到问题,就非常难以解决。近年来,许多的产品裹足不前,就是这个原因。 (5) 价格进一步下降。由于激烈的竞争,以及后来者为了夺取业绩而不得已采用的低价策略,高压变频器的价格下降很快,在某些项目上,一些竞争报出的价格甚至低于成本价。 随着技术的进步,高压变频器除了在已有的市场上继续扩大规模外,还将进一步扩展应用的领域,对于很多负载,还需要解决变频器的工程应用上的问题。总之,高压变频器正在迎来发展的黄金时期。 1 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n = ) 式中 n——— 异步电动机的转速; f——— 异步电动机的频率; s——— 电动机转差率; p——— 电动机极对数。 由式 (Hz 的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 2 变频器控制方式 低压通用变频输出电压为 kW ,工作频率为 Hz ,它的主电路都采用交 — 直 — 交电路。其控制方式经历了以下四代。 的正弦脉宽调制( SPWM )控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 电压空间矢量( SPWM )控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 矢量控制( C )方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流 Ia 、 Ib 、 Ic 、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia 、 It 相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 三相异步电动机工作原理: 三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。 变频电机工作原理: 变频电机采用“专用变频感应电动机变频器”的交流调速方式,使机械自动化程度和生产效率大为提高设备小型化、增加舒适性,目前正取代传统的机械调速和直流调速方案。 变频电机工作原理: 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(vvvf变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为igbt三相桥式逆变器,且输出为pwm波形,中间直流环节为滤波、直流储能和缓冲无功功率。 直流电动机的工作原理 如果直流电机的转子不用原动机拖动,而把它的电刷a、b接在电压为u的直流电源上(如图2所示),那么会发生什么样的情况呢?从图上可以看出,电刷a是正电位,b是负电位,在n极范围内的导体ab中的电流是从a流向b,在s极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到s极范围内,cd边转到n极范围内,但是,由于换向片和电刷的作用,转到n极下的cd边中电流方向也变了,是从d流向c,在s极下的ab边中的电流则是从b流向a。因此,电磁力fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在n、s极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工作机械。

6、电机变频器的工作原理

   展开全部 现使用的变频器主要采用交—直—交方式(F变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。再补充一下,在变频技术以前,电机用的是直流电调速,就是改变直流电电 压,因为直流电机有电刷,维护复杂,还有电火花(危险场合不能用),基本淘汰。相对来说直流调速,速度更稳定,所以还有使用。图中为采用变频功率分析仪截取的变频器输入输出的电压和电流波形图。 三相交流异步电动机工作原理: 三相交流异步电动机工作原理:三相对称绕组,通入三相对称交流电,将在空间产生旋转磁场,此磁场切割转子导体,将在转子中产生感应电动势及感应电流,并且转速低于同步速并与同步速方向相同旋转。 中国的工业用电(民用也是Hz,相当于极2对)。 附:电动机转速的计算公式是n=f/t 注:n表示电机转速,f表示电源频率,我国为赫兹,t表示电机磁极对数。 变频电机的工作原理与三相交流异步电动机工作原理一样,变频电机是通过改变输入三相交流电的频率改变电机的转速,一句话,变频是用来调速的。 普通的三相交流异步电动机也可以作变频电机使用,没有本质区别,只是变频电机在频率的影响上作了优化,变频电机的工作频率一般5Hz~Hz. 变频器(variablefrequency drive,vfd)是应用变频技术与电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单、驱动单、检测单处理单等组成。通过改变电源的频率来达到改变电源电压的目的,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 工作原理 概述 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 平波回路 在整流器整流后的直流电压中,含有电源相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。 控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 ()驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。 (4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信为速度信,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。