1、PAGE原理(聚丙烯酰胺凝胶电泳)

   凝胶层的不连续性:不连续系统的凝胶包括浓缩胶和分离胶。浓缩胶的孔径大,分离胶的孔径小。在电场的作用下,蛋白质颗粒在大孔胶中泳动时遇到的阻力小,移动快。而在小孔胶中泳动时遇到的阻力大,移动慢。因此,在两层凝胶的交界处,由于凝胶孔径的不连续性使样品迁移受阻而压缩成很窄的区带。 缓冲液离子成分和pH的不连续性:在两层凝胶中均有Tris和HCl。Tris的作用是维持溶液的电中性及pH。HCl在一定pH条件下易解离出Cl,它在电场中迁移率大,走在最前面,故称为快离子或前导离子。,,因而在电场中迁移率很小,称为慢离子或尾随离子。血清中,,,在电场中均移向正极,其有效迁移率介于快慢离子之间,于是蛋白质就在快慢离子间形成的界面处,被浓缩成极窄的区带。,甘氨酸解离度增加,其有效迁移率超过蛋白质,因此氯离子和甘氨酸离子沿着离子界面继续前进。蛋白质分子由于分子量大,被留在后面,然后分离成多个区带。 此外,电泳体系中电位梯度的不连续性对样品的浓缩和迁移也具有一定作用。 是不是说做PAGE的时候有浓缩胶和分离胶? 过浓缩胶是把蛋白压平,浓缩胶浓度大,所以蛋白在这一层被压平。然后进分离胶更容易分层 不连续电泳体系采用了两种或两种以上的缓冲液、PH值和孔径,能使稀的样品在电泳过程中浓缩成层,从而提高分辨力。

2、聚丙烯酰胺凝胶电泳(PAGE)原理是什么?

    聚丙烯酰胺凝胶电泳(polyacryamide gel electropHoresis, PAGE)是由丙烯酰胺单体和交联剂甲叉双丙烯酰胺在催化作用下形成的三维网状结构物质。在不连续聚丙烯酰胺凝胶电泳中,凝胶的制作是分层进行的,因此凝胶不仅有分子筛效应,还具有浓缩效应。和琼脂糖凝胶相比,聚丙烯酰胺凝胶难于制备和处理。它们的分离范围较窄。但是它们也有突出的优点,由于是不连续的pH 梯度,故样品被压缩成一条狭窄的区带,因而增强了分离效果,提高电泳分辨率。尤其对小DNA 片段的分析(bp 的DNA 分子也能清晰地分开。其次,DNA 纯度很高。从聚丙烯酰胺凝胶中得到的DNA 纯度很高以致于下步操作不用任何处理。还有,它的负载容量高。该胶的标准加样槽中可以加入高达mL 的DNA 样品,而不影响电泳分辨率。多应用于分离纯化和鉴定大小为bp 的DNA 片段。聚丙烯酰胺凝胶电泳有连续与不连续体系两种,前者指在整个电泳体系中的缓冲液pH 值和凝胶孔径大小相同,主要用于核酸分析。后者主要用于蛋白质样品的分离,它除了电泳槽中的缓冲体系和pH 值与凝胶中不同外,凝胶本身也由缓冲体系、pH 值和凝胶孔径不同的两种凝胶堆积而成。? 生物帮上面有这方面的详细内容,分子生物学缓冲液 凝胶层的不连续性:不连续系统的凝胶包括浓缩胶和分离胶。浓缩胶的孔径大,分离胶的孔径小。在电场的作用下,蛋白质颗粒在大孔胶中泳动时遇到的阻力小,移动快。而在小孔胶中泳动时遇到的阻力大,移动慢。因此,在两层凝胶的交界处,由于凝胶孔径的不连续性使样品迁移受阻而压缩成很窄的区带。 缓冲液离子成分和pH的不连续性:在两层凝胶中均有Tris和HCl。Tris的作用是维持溶液的电中性及pH。HCl在一定pH条件下易解离出Cl,它在电场中迁移率大,走在最前面,故称为快离子或前导离子。,,因而在电场中迁移率很小,称为慢离子或尾随离子。血清中,,,在电场中均移向正极,其有效迁移率介于快慢离子之间,于是蛋白质就在快慢离子间形成的界面处,被浓缩成极窄的区带。,甘氨酸解离度增加,其有效迁移率超过蛋白质,因此氯离子和甘氨酸离子沿着离子界面继续前进。蛋白质分子由于分子量大,被留在后面,然后分离成多个区带。 此外,电泳体系中电位梯度的不连续性对样品的浓缩和迁移也具有一定作用。

3、SDS-PAGE电泳的原理是什么?

   作用原理聚丙烯酰胺凝胶电泳是网状结构,具有分子筛效应,它有两种形式,一种是非变性聚丙烯酰胺凝胶,蛋白质在电泳中保持完整的状态,蛋白在其中依三种因素分开:蛋白大小,形状和电荷。 而SDSPAGE仅根据蛋白分子量亚基的不同而分离蛋白。这个技术首先是年由shapiro建立,他们发现在样品介质和丙烯酰胺凝胶中加入离子去污剂和强还原剂后,蛋白质亚基的电泳迁移率主要取决于亚基分子量的大小,电荷因素可以忽视。 SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二。三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使绊胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白 SDS胶束,所带的负电荷大大超过了蛋白原有的蛋白量,这样就消除了不同分子间的电荷差异和结构差异。 SDSPAGE一般采用的是不连续缓冲系统,于连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCL缓冲液,电级液选TRIS/甘氨酸。电泳开始后,HCL解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成以稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 sds聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进sds(十二烷基硫酸钠),sds会与变性的多肽,并使蛋白带负电荷,由于多肽结合sds的量几乎总是与多肽的分子量成正比而与其序列无关,因此sds多肽复合物在丙稀酰胺凝胶电泳中的迁移率只与多肽的大小有关,在达到饱和的状态下,。当分子量在kd到kd之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logmw=kbx,式中:mw为分子量,x为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上得分子量。生物帮上面有去看看吧,? ?生物生理学科研进展,植物生理学科研进展,动物生理学科研进展,人体生理学科研进展?。

4、SDS-PAGE电泳的工作原理

   SDSPAGE:蛋白质的相对分子质量决定了SDS蛋白复合物在凝胶电泳中的迁移率,聚丙烯酰胺凝胶中的去垢剂SDS带有大量的负电荷,与之相比,蛋白质所带电荷量可忽略不计。因此,蛋白质在SDS凝胶电场中的运动速度和距离完全取决于相对分子质量(速度与相对分子质量成反比)而不受其所带电荷的影响,不同相对分子质量的蛋白质将位于凝胶的不同区段而得到分离。 实验原理是:在电场的作用下,带电粒子能在聚丙烯凝胶中迁移,其迁移速度与带电粒子的大小、构型和所带的电荷有关。十二烷基磺酸钠(SDS)能与蛋白质的结合,改变蛋白质原有的构象,使其变成近似于雪茄烟形的长椭圆棒,其短轴长度一样,而长轴与分子量大小成正比。在SDSPAGE中,SDS复合物的迁移率不再受蛋白的电荷和形状的影响,而只与蛋白质的分子量正相关。在一定浓度的凝胶中,由于分子筛效应,则电泳迁移率就成为蛋白质分子量的函数,实验证实分子量在kD~ kD 的范围内,电泳迁移与分子量的对数呈直线关系,用此法可根据已知分子量白质的电泳迁移率和分子量的对数做出标准曲线,再根据未知蛋白质的电泳迁移率得分子量。同时也可根据不同分离级分的蛋白条带的多少来判定分离纯化产物的纯度。

5、常规PAGE和SDS PAGE电泳有何异同?

   利用的原理都是胶体的电泳,自由平面(介质)都相同,SDS是在原有的PAGE基础上进行了改进,就是加了SDS使样品(蛋白)的荷质比相同,形状都变成长圆柱体,则样品的迁移率就只与分子量有关,可以较准确的分离开质量不同的成份,目的比一般的电泳更明确 纸电泳和聚丙烯酰氨凝胶电泳的目的是相同的,都是利用电泳技术分离蛋白质。 其他像电泳设备,电泳材料,实验操作,分辨率,电泳时间都是不同的。 而且纸电泳是那种设备简单,分辨率差,时间长的原始技术手段,现在基本上已经绝迹了。它的缺点基本上都是现在常用的电泳技术也就是聚丙烯酰氨凝胶电泳的优点。 SDS是一种阴离子去垢剂,能让寡聚体蛋白中不同的亚基分离,而不能使二硫键开。如果想让二硫键开,必须要用2巯基乙醇或过氧酸来处理。(二楼的回答还是比较准确的) 常规PAGE又称NativePAGE,是在不改变蛋白质的活性的基础上做的电泳,即不加入任何变性剂。 SDS聚丙烯酰胺凝胶电泳,是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基硫酸钠), SDS能断裂分子内和分子间氢键,破坏蛋白质的二级和三级结构,强还原剂能使半胱氨酸之间的二硫键断裂,蛋白质在一定浓度的含有强还原剂的SDS溶液中,与SDS分子按比例结合,形成带负电荷的SDS蛋白质复合物,这种复合物由于结合大量的SDS,使蛋白质丧失了原有的电荷状态形成仅保持原有分子大小为特征的负离子团块,从而降低或消除了各种蛋白质分子之间天然的电荷差异,由于SDS与蛋白质的结合是按重量成比例的,因此在进行电泳时,蛋白质分子的迁移速度取决于分子大小。当分子量在KD到KD之间时,蛋白质的迁移率和分子量的对数呈线性关系,符合下式:logMW=KbX,式中:MW为分子量,X为迁移率,k、b均为常数,若将已知分子量的标准蛋白质的迁移率对分子量对数作图,可获得一条标准曲线,未知蛋白质在相同条件下进行电泳,根据它的电泳迁移率即可在标准曲线上得分子量。